
†901 San Antonio Road, UMPK27-101
Palo Alto, CA 94303-4900
david.naegle@Eng.Sun.Com (650) 786-3939
††michael.deering@acm.org

ABSTRACT

The Scalable, Advanced Graphics Environment (SAGE) is a new
high-end, multi-chip rendering architecture. Each single SAGE
board can render in excess of 80 million fully lit, textured, anti-
aliased triangles per second. SAGE brings high quality antialiasing
filters to video rate hardware for the first time. To achieve this, the
concept of a frame buffer is replaced by a fully double-buffered
sample buffer of between 1 and 16 non-uniformly placed samples
per final output pixel. The video output raster of samples is subject
to convolution by a 5×5 programmable reconstruction and bandpass
filter that replaces the traditional RAMDAC. The reconstruction filter
processes up to 400 samples per output pixel, and supports any ra-
dially symmetric filter, including those with negative lobes (full
Mitchell-Netravali filter). Each SAGE board comprises four paral-
lel rendering sub-units, and supports up to two video output chan-
nels. Multiple SAGE systems can be tiled together to support even
higher fill rates, resolutions, and performance.

CR Categories and Subject Descriptors: I.3.1 [Computer Graph-
ics]: Hardware Architecture; I.3.3 [Computer Graphics]: Picture/
Image Generation Display Algorithms; I.3.7 [Computer Graphics]:
Three Dimensional Graphics and Realism.

Additional Keywords and Phrases: rendering hardware, anti-
aliasing, graphics hardware, frame buffer algorithms, graphics sys-
tems, hardware systems, video.

1 INTRODUCTION

The history of computer graphics hardware has been blazed by high
end architectures, ever advancing in features and performance. But
such systems have also been ever increasing in cost to develop, and
in more recent times many new graphics features have instead made
their debut in lower cost implementations aimed at home entertain-
ment markets. But the formidable cost constraints on products for
the consumer market precludes many features, interfaces, and lev-
els of performance essential to the higher end needs of the scientif-
ic, medical, manufacturing, visual simulation, and other industrial
markets. For the forseeable future, the only way to meet these ever
growing needs is to architect graphics systems where multiple ren-

dering chips can be applied in parallel, but appear to the application
as a single, high performance rendering pipe. While there have been
some attempts to build such systems out of arrays of inexpensive
game chips [Stoll et al. 2001], such chips were never designed to be
clustered, and so far at least, the resulting systems have not yet been
proven effective for traditional high end applications.

In this paper we describe the architecture of SAGE (Scalable Ad-
vanced Graphics Environment), a major new multi-chip high end
rendering system designed to meet the needs of industrial strength
3D graphics applications. A single SAGE board can render over 80
million fully lit, textured, antialiased triangles per second. SAGE
brings high quality antialiasing filters to video rate hardware for the
first time. To achieve this, the concept of a frame buffer is replaced
by a fully double-buffered sample buffer of between 1 and 16 non-
uniformly placed samples per final output pixel. The raster of sam-
ples is subject to convolution by a 5×5 programmable reconstruction
and bandpass filter that replaces the traditional RAMDAC. This con-
volution is performed on-the-fly during video output, adding less
than one additional scan line time of latency. The reconstruction fil-
ter processes up to 400 samples per output pixel, and supports any
radially symmetric filter, including those with negative lobes, e.g.,
full Mitchell-Netravali filters. Each SAGE board contains four par-
allel rendering sub-units, and supports up to two video output chan-
nels. Multiple SAGE systems can be tiled together to support even
higher fill rates, resolutions, and performance.

The flow of the paper is as follows: after some discussion of market
requirements, an overview of the SAGE architecture will be pre-
sented, followed by more detailed discussion of the various pipeline
stages. The focus here is on the mechanisms that allow us to seam-
lessly aggregate single chip rasterizers into a more powerful overall
system. In the second half of the paper, our approach to video rate
antialiasing is described in depth, as it is the most novel feature of
the new architecture.

2 HIGH END MARKET NEEDS

Customers have ever increasing needs for higher display resolution,
but unfortunately display technology doesn’t come close to follow-
ing Moore’s Law: there has been less than a factor of two improve-
ment in available display resolution in more than a decade; less than
10% a year [Akeley 2001]. But IC process capability has followed
Moore’s Law; it has advanced sufficiently to allow us to put photo-
realistic software renderers’ antialiasing algorithms into real-time
hardware. This allows us to increase the effective resolution of cur-
rent display devices.

The preceding observation was one of the prime motivators of
SAGE’s very high quality real-time antialiasing pipeline: massive
supersampling with large area resampling and bandpass filters in
effect provides a back end architecture very similar to software ren-
dering. The pin-count, storage, and computational requirements of
these proven algorithms will be beyond the reach of single chip ren-
dering pipelines for several more years to come, even with the an-

The SAGE Graphics Architecture
Michael Deering†† David Naegle†

 Sun Microsystems

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

683

nual boost from Moore. This is because pin-count × pin-data-rate =
bandwidth-per-chip also lags well below Moore’s rate.

Another way to increase display resolutions would be to tile the dis-
plays, but we found that most customers who use tiling also want
each display antialiased. Part of the reason for this is that, so far,
projectors adequate for tiling cost more each than a SAGE system.

The historical trend of ever increasing demand for higher triangle
rates is coupled with a nearly corresponding decrease in the median
size of triangles, so the implied demand for the product of the two,
fill rate, is more slowly increasing. This makes sense; applications
are displaying scenes of slowly increasing depth complexity but
with finer and finer surface tesselations to produce more and more
detailed and realistic imagery. But as the median triangle size ap-
proaches a pixel, they effectively become micro-triangles, and fur-
ther reductions in triangle size will have diminishing returns in vis-
ible detail or realism. For hardware architectures, this means that
more attention should be paid to other measures of increasing the
detail and realism of images, such as antialiasing and more complex
shader support. This trend was already becoming apparent during
the design of SAGE. This is why we put more emphasis on increas-
ing the sampling density than on the triangle rate.

Window system and other legacy API and application support are
important market requirements, and in the design of SAGE we
made sure that these were not forgotten. Even non-antialiased ap-
plications work with SAGE’s video resizing.

3 SAGE ARCHITECTURE

3.1 Overview

SAGE’s block diagram is seen in figure 1. In this diagram we have
expanded out the external buses, internal FIFOs, and internal multi-
plexers / load-balancing switches so that the overall data flow and
required sorting may be more easily seen at the system level.
SAGE’s inter-chip connections are typically unidirectional, point-
to-point, source-synchronous digital interconnects. The top half of
SAGE’s diagram is fairly similar to other sort-last architectures:
command load balancing is performed across parallel transform and
rasterize blocks, followed by the “sort-last” tree (the Sched chips) in-
terfacing to the frame buffer. In SAGE, however, the frame buffer is
replaced with a sample buffer containing 20 million samples. On the
output side of the sample buffer, SAGE introduces an entirely new
graphics hardware pipeline stage that replaces the RAMDAC: a sam-
ple sort tree followed by parallel Convolve chips that apply a 5×5
programmable reconstruction and bandpass filter to rasters of sam-
ples. Each Convolve chip is responsible for antialiasing a separate
vertical column of the screen; the finished pixels are emitted from
the Convolves in video raster order.

3.2 Command Distribution

At the top of the pipeline, the Master chip performs DMA from the
host to fetch OpenGL command and graphics data streams. The
DMA engine is bidirectional, and contains an MMU so that applica-
tion data can reside anywhere in virtual memory: no locking of ap-
plication data regions is necessary. For geometric primitives,
streams of vertex data are distributed in a load-balanced way to the
four parallel render pipelines below.

3.3 Rendering: Transform, Lighting, Setup, Rasterization

Each render pipeline consists of two custom chips plus several
memory chips. The first custom chip is a MAJC multi-processor
[Tremblay et al. 2000], the second is the Rasterize chip, which per-
forms set-up, rasterization, and textured drawing.

Many previous architectures are sort-middle (following the taxono-
my of [Molnar et al. 1994]): they have parallel transform, lighting,
and set-up pipelines, but recombine the streams into a one-primitive-
at-a-time distributed drawing stage. In architecting SAGE, certain
bandwidth advantages motivated our choice of a sort-last architec-
ture: as the average pixel size of application triangles shrinks, the size
of the set-up data becomes larger than the actual sample data of the
triangle. This also improves efficiency by allowing each rasterization
chip to generate all the samples in a triangle, rather than just a fraction
of them, as occurs with interleaved rasterization.

The MAJC chip contains specialized vertex data handling circuits that
support two fully programmable VLIW CPUs. These CPUs are pro-
grammed to implement the classic graphics pipeline stages of trans-
form, clip check, clipping, face determination, lighting, and some geo-
metric primitive set-up operations. The special vertex data circuitry
handles vertex strip and mesh connectivity data, so that the CPUs only
see streams of non-redundant vertex data most of the time. Thus redun-
dant lighting computations are avoided, and vertex re-use can asymp-
totically reduce the required vertex processing operations to 1/2 of a
vertex per triangle processed when vertex mesh formats are used.

To support a sample buffer with programmable non-uniform sam-
ple positions, the hardware fill algorithms must be extended beyond
simple scan-line interpolation. Generalizations of plane equation
evaluation are needed to ensure correctly sampled renderings of
geometric primitives. Furthermore, the sample fill rate has to run 8
to 16 times faster than the rasterize fill of a non-supersampled ma-
chine just to keep up. The aggregate equivalent commodity DRAM
bandwidth of SAGE’s eight 3DRAM memory interleaves is in ex-
cess of 80 gigabytes per second.

The Rasterize chip rasterizes textured triangles, lines, and dots into
the sample buffer at the current sample density. It also performs
some imaging functions and more traditional raster-op and window
operations. Each MAJC + Rasterization pipeline can render more
than 20 million lit textured supersampled triangles per second. Each
Rasterizer chip has it own dedicated 256 megabytes of texture
memory. This supports 256 megabytes of user texture memory, at
four times the bandwidth of a single pipe, or up to one gigabyte of
texture memory, when applications use the OpenGL targeted tex-
ture extension (this is a common case for volume visualization ap-
plications).

For textured triangles, the Rasterize chip first determines which
pixels are touched (even fractionally) by the triangle, applies layers
of (MIP-mapped, optionally anisotropic filtered) texturing to each
pixel, determines which (irregular) sample positions are within the
triangle, and interpolates the color, Z, and alpha channel data to
each sample point. The output is a stream of sample rgbaZ packets
with a screen pixel xy address and sample index implying the sam-
ple’s sub-pixel location within that pixel. Each Rasterize chip has
two external output buses so that the first stage routing of sample
data to sample memory is performed before the samples leave the
Rasterize chip.

3.4 Sort-Last

Below the Rasterize chips lies a network comprising two Sched
chips to route samples produced by any of the Rasterize outputs to
any pixel interleave of the sample buffer below. As samples arrive
in the Sched chip input FIFO from Rasterize chips, they are routed
into the appropriate second stage FIFO based on their destination
memory interleave. The output of each second stage FIFO is con-
trolled by the load balancing switch for its memory interleave. Each
switch acts like a traffic light at a busy intersection; traffic from one
source is allowed to flow unimpeded for a time while the other
sources are blocked. This (programmable) hysteresis in the flow of

684

Dram

6 swath line buffer

Dram MAJC

Rasterize

µcode

texture

Host DMA Bus

Master

Video out 1 2

Figure 1. SAGE block diagram. Thick boxes are CUSTOM CHIPS. Red boxes are FIFOS. Green circles are load balancing SWITCHES.

Convolve
6 swath line buffer

Convolve
6 swath line buffer

Convolve
6 swath line buffer

Convolve

Route

Dram

Dram MAJC

Rasterize

µcode

texture

Dram

Dram MAJC

Rasterize

µcode

texture

Dram

Dram MAJC

Rasterize

µcode

texture

Sample
Buffer

3DRAM 3DRAM 3DRAM 3DRAM

Sched

3DRAM 3DRAM 3DRAM 3DRAM

Sched

685

sample data from different Rasterize chips ensures good cache lo-
cality within the 3DRAM memories below.

The third layer of FIFOs in the Sched chip is a final sample pre-write
queue in front of a single memory interleave. (An interleave is a
group of 4 3DRAM chips connected to the same pre-write queue.).
The Sched chips snoop this queue to perform 3DRAM cache
prefetches, before scheduling the sample writes into the sample
buffer.

Because the parallel rasterized sample streams merge together here,
the Sched chip is also the place where special control tokens enforce
various render-order constraints. For example, most algorithms that
make use of the stencil buffer require at least two passes—one to
“prepare” the stencil buffer with a special pattern, and then another
pass with sample writes conditionally enabled by the presence of
that special stencil pattern. Clearly all stencil writes of the first pass
must complete before any of the second pass sample writes can be
allowed to go forward. When a given interleave on a given Sched
chip encounters a special synchronization token marking a hard or-
dering constraint (e.g, the boundary between the two passes), then
no more samples from that rasterizer will be processed until the oth-
er three rasterizer inputs have also encountered and stopped at the
synchronization token. When this occurs, all samples generated by
primitives that entered the SAGE system before the synchronization
token have been processed (the first pass in our example), and now
it is okay to allow the pending samples that entered the system after
the synchronizing token to proceed. The OpenGL driver knows to
generate this ordering token when it is in unordered rendering mode,
and then sees a command to transition to ordered rendering mode
immediately followed by a command to change back to unordered
rendering mode. Other more complex situations are supported by
more complex special token generation by the driver.

As controllers of the 3DRAM chips, the Sched chips also respond to
requests from the Convolve chips for streams of samples to be sent
out over the 3DRAM video output pins to the parallel Convolve chips
to generate the video output.

3.5 The Sample Buffer

The sample buffer consists of 32 3DRAM chips, organized into eight
independent interleaves of four chips each. On the input side, four
3DRAMs share a single set of control, address, and data lines to one
of four sets of memory interleave pins on a Sched chip. On the out-
put side, each 3DRAM outputs 40-bit samples by double pumping 20
video output pins. Each of these pins has an individual wire to a
Route chip, for a total of 640 wires entering the lower route network.

Logically, the sample buffer is organized as a two dimensional ras-
ter of lists of samples. All lists are the same length, because all pix-
els on the screen have the same number of samples. The list-order
of a sample implies its sub-pixel location; the Rasterize and Con-
volve chips contain identical sample-location tables accessed by the
sample index, so no space is allocated within the sample buffer for
the sub-pixel location of the sample. The memories are interleaved
per-sample: adjacent samples in a list are in different 3DRAM pack-
ages.

Unlike first-generation 3DRAM components, the new 3DRAMs used
on SAGE contain an internal 2:1 multiplexer driven by each sam-
ple’s window ID, so sample-by-sample double-buffering occurs in-
side the 3DRAM chip. Thus only the final rgb alpha/window control
bits emerge in the 40-bit-per-sample output packet.

The size of the sample buffer is enough to support 1280×1024 double-
buffered samples with Z at a sample density of 8, or 1920×1200 at a
sample density of 4. The high sample densities require correspondingly
high render bandwidth into the sample buffer. This was achieved by a
new generation of 3DRAM [Deering et al. 1994]. Because 3DRAM per-

forms z-buffer compare and alpha buffer blending internally, the tradi-
tional z-buffer read-modify-write operation is simplified into just a
write operation. The important operation of clearing the sample buffer
for a new frame of rendering is also potentially adversely affected by
the high sample density, but this too is greatly accelerated by the
3DRAM chips; initializing all samples in a 1280x1024x8 sample raster
takes less than 200 usec. (less than 2% of a 76-hz frame time).

3.6 Sample Raster Delivery

The 640 outputs of the sample buffer feed into an array of 10 Route
chips. Each Route chip is a 2-bit slice of a router function. Each Route
chip connects to 2 output data pins from each of the 32 3DRAMs, and
can redirect this data to any of the four Convolve chips attached to it
below. Because of the need for the Convolve chips to be fed a contig-
uous vertical swath of the pixel interleaved sample buffer, samples
are read from the sample buffers in quarter scan line wide, one pixel
high bursts directed at one of the four Convolve chips. (More details
will be discussed in the Convolve section.) It is the job of the Route
chip to absorb these bursts into internal FIFOs, and then dribble them
back out to their destination Convolve chip.

3.7 Convolution, CLUT, Video Timing

Finally, the four Convolve chips perform the reconstruction and
band limiting filtering of the raster stream of samples, producing
pixels that are fed into the next Convolve chip before final video
output. The Convolve chips replace the digital portion of the RAM-
DAC; they contain color look-up and gamma tables, as well as the
video timing generator, cursor logic, and genlock interface. The
Convolve chips do not contain D/A converters. Instead, the Con-
volve video outputs are digital, to support various existing and
emerging digital video interfaces. Two high quality external D/A
converters and an S-video interface are on the SAGE video daugh-
ter board to support analog video devices.

The traditional graphics hardware taxonomy refers to this section as
display, however the RenderMan term imaging pipeline may be a
more accurate description of this new functionality.

The next several sections describe the convolution processing in
more detail, starting off with a discussion of previous attempts to
implement video rate antialiasing.

4 CONVOLUTION INTRODUCTION

For over a decade now, users of most (batch) photorealistic render-
ing software have been able to obtain high quality antialiased imag-
ery, usually by means of various supersampling algorithms. How-
ever, for real-time hardware systems, cost constraints have preclud-
ed the deployment of all but the most simplistic approximations to
these algorithms. Fill rate limitations make real-time generation of
enough samples challenging. Restrictions in hardware polygon fill
algorithms can preclude sub-pixel spatially variant sampling. Mem-
ory costs and bandwidth limits have prohibited use of double-buff-
ered supersampled frame buffers. Finally, the computational cost of
real-time antialiasing reconstruction filters has limited hardware
implementations to box or tent filters, which are inferior to most
software reconstruction filters.

Various alternatives to stochastic supersampling have been tried
over the years in attempts to avoid high hardware costs, but to date
all such attempts have limited the generality of the rendering and
have not seen much use in real-time general-purpose graphics hard-
ware systems. Their use has been confined to applications whose
structure could be adequately constrained: flight simulation and
some video games.

Once the non-uniform supersampling approach is taken, a number
of other rendering effects can be performed by applications through

686

the use of multi-pass algorithms and user programmable sample
mask patterns. These include motion blur, depth of field, anisotro-
pic texture filtering, subject to supported sample densities. In this
paper we do not directly address these features, rather, we focuses
on the basic back-end architecture required to support filtered su-
persampled buffers.

5 PREVIOUS ANTIALIASING WORK

5.1 PREVIOUS WORK, SOFTWARE

Antialiasing has a rich and detailed history. The mainstream ap-
proach in recent years has been to evaluate the image function at
multiple irregularly spaced sample points per pixel, followed by ap-
plying a reconstruction filter and then resampling with a low-pass
filter. Originally referred to as stochastic supersampling, the basic
idea is to trade off visually annoying aliasing artifacts (jaggies) for
less visually perceptible noise. [Glassner 1995] contains an excel-
lent survey and discussion of the many variants of this approach
that have been implemented over the years. The pioneering com-
mercial software implementation of this approach is Pixar’s Photo-
Realistic RenderMan [Cook et al. 1987][Upstill 1990].

PREVIOUS WORK, HARDWARE

5.2 Flight simulators, back-to-front sorting-based
algorithms

Real-time antialiasing has been a requirement of flight simulation
hardware for several decades. However, most of the early work in
the field took advantage of known scene structure, usually the abil-
ity to constrain the rendering of primitives to back-to-front. But
these algorithms do not scale well as the average scene complexity
grows from a few hundred to millions of polygons per frame.

5.3 Percentage Coverage Algorithms

Some systems, for example [Akeley 1993][Winner et al. 1997],
have employed polygon antialiasing algorithms based on storing
extra information per pixel about what polygon fragments cover
what fractions of the pixel. In principle, algorithms of this class can
produce higher quality results than even supersampling techniques,
because the exact area contribution of each polygon fragment to the
final visible pixel can be known. In practice, hardware systems can
only afford to maintain a limited amount of shape information
about a limited number of polygon fragments within each pixel. For
scenes consisting of small numbers of large polygons, most poly-
gons are very much greater in area than a pixel, and the vast major-
ity of pixels are either completely covered by just one or two poly-
gons. Occlusion edges and silhouettes would then have their jaggies
removed. With care, even corner cases when more than two poly-
gons of one continuous surface land within one pixel can often be
merged back into the single polygon case.

However, with today’s typical polygon shrinking towards a micro-
polygon, such algorithms rapidly become confused, causing unac-
ceptable visible artifacts.

5.4 Multi-pass Stochastic Accumulation Buffers

The first attempted support for general full scene antialiasing inde-
pendent of render order in near-real-time hardware was the multi-
pass stochastic accumulation buffer [Deering et al. 1988][Haeberli
and Akeley 1990]. The approach here was to render the scene mul-
tiple times with different sub-pixel initial screen offsets, and then
combine these samples with an incremental filter into an accumula-
tion buffer before final display. However, the multiple passes and

the overhead of filtering and image copying reduced the perfor-
mance of the systems by an order of magnitude or more, while still
adding substantial cost for the (deeper pixel) accumulation buffer.
As a result, while the technique has been supported by multiple
vendors, it has never found much use in interactive applications.
Also, because the sub-pixel sample positions correlate between pix-
els, the final quality does not match that of software systems.

5.5 Supersampling

Some architectures have implemented subsets of the general super-
sampling antialiasing algorithm. [Akeley 1993] and [Montrym et al.
1997] implement a one through eight sample-per-pixel rendering
into a single-buffered sample buffer. When sample rendering is
complete, the samples within each pixel are all averaged together
and transferred to an output pixel buffer for video display. The com-
bined reconstruction and low-pass filter is thus a 1×1 box filter, and
does not require any multiplies. The 1x1 region of support also
eliminates the need for neighboring pixels to communicate during
filtering. While the quality does not match that of batch software
renderers, the results are appreciably better than no supersampling,
and have proven good enough to be used in flight simulation and
virtual set applications, among others. [Eyles at. al. 1997] imple-
mented supersampled rendering with a 1×1 weighted filter.

At the lower end, some simple processing for antialiasing is begin-
ning to show up in game chips. [Tarolli et al. 1999] appears to be
an implementation of a 2×2 single buffered supersampled buffer,
but it is not clear if other than box filtering is supported. The nVidia
Geforce3 supports sample densities of either 2 or 4, with either a
1×1 box filter, or a 3×3 tent filter [Dominé 2001]. The resultant
quality is better than no antialiasing at all, but still far from the qual-
ity of batch photorealism software. The frame rates, however, do
suffer almost linearly in proportion to sample density.

The OpenGL 1.3 specification does contain support for supersam-
pling, but only in the context of applying the filtering before the
render buffer to display buffer swap.

6 SAGE SUPERSAMPLING ISSUES

6.1 Programmable Nonuniform Sample Pattern

An important component of high-quality supersampling based anti-
aliasing algorithms is the use of carefully controlled sample patterns
that are not locally periodic. Today’s best patterns are constrained
random perturbations of uniform grids. Software algorithms can af-
ford the luxury of caching tens of thousands of pixel area worth of
pre-computed sample patterns. On-chip hardware is much more se-
verely space constrained; SAGE only supports a pattern RAM of 64
(2x2 pixels x 16 samples) of 6-bit x and 6-bit y sub-pixel offset en-
tries. However, the effective non-repeating size of this pattern is ex-
tended to 128x128 pixels by the use of a 2D hardware hash function
that permutes access to the pattern entries. The effectiveness of this
hash function can be seen in Figure 5, where each large colored dot
corresponds to a sample. Because the table is so small, it is easily
changeable in real-time on a frame-by-frame basis, supporting tem-
poral perturbation of the sample pattern.

Note that in the SAGE system the sample tables for the frame cur-
rently being displayed are stored in the Convolve chips, while the
sample tables for the frame currently being rendered are stored in
the Rasterizer chips. If the tables are not static, system software
must ensure that they are updated at the appropriate time bound-
aries.

687

7 CONVOLVE CHIP ARCHITECTURE DETAILS

One of the primary ways in which our architecture differs from pre-
vious systems is that there is no attempt to compute the antialiased
pixels on the render side of the frame buffer. As far as the sample
buffer is concerned, the output display device is capable of display-
ing supersamples; it is up to the back end reconstruction filter pipe-
line to convert streams of supersamples into antialiased pixels on
the fly at full high-resolution video rates.

The peak data rates required to support this are impressive: the
frame buffer has to output 1.6 billion samples per second, or ap-
proximately 8 gigabytes per second of data. Real-time high-quality
filtering of this much data is beyond the capabilities of today’s sil-
icon in a single chip. Thus, we had to find a way to spread the con-
volution processing of this fire-hose of data across multiple chips.
As seen in Figure 1, our convolution pipeline is split up into four
chips. Each chip is assigned a different vertical swath of the
screen’s samples. Because reconstruction filters of up to 5×5 are
supported, each of these vertical swaths must overlap their horizon-
tal neighbors by up to 2 pixels (half the filter width). The final video
stream is assembled as video is passed from chip to chip; each chip
inserts its portion of each scan line into the aggregate stream. The
last chip delivers the complete video stream. (An optional second
video stream also emerges from this last chip.)

The 5×5 filter size also implies that each sample will potentially be
used in up to 25 different pixel computations. To avoid re-fetching
samples from off-chip, 6 swath-lines worth of sample data is
cached on each Convolve chip. (This RAM consumes half the ac-
tive area of the chip.)

The internal architecture of the chip is shown in Figure 2. The video
generation process for each chip starts with the generation of a raster of
convolution center (output pixel center) locations across and down
each swath. As the convolution center location moves, sample data is
transferred from the swath-line buffers into a 5×5 filter processor array.

A schematic of a filter processor is shown in Figure 3. Each filter
processor is responsible for all the samples from one pixel from the
sample buffer; the 5×5 array has access to all the samples that may
contribute to a single output pixel. The filter processor computes
the contribution of its samples to the total convolution; the partial
results from all 25 filter processors are then summed to form the un-
normalized convolution result. Because of the nonuniform, non-lo-
cally repeating properties of good sample patterns, it is not feasible
to cache pre-computed convolution filter coefficients. Instead, each
filter processor contains circuitry for dynamically computing cus-

tom filter coefficients for arbitrary sample locations. It also con-
tains the multiplier-accumulator that actually weights its samples.

This filter coefficient computation proceeds as follows. First, the
sample location relative to the convolution center is computed by
subtracting the sample xy location (generated by the sample pattern
RAM) from the convolution center xy location. Squaring and sum-
ming the these delta xy components results in the squared radial dis-
tance of the sample location from the convolution center. This
squared distance is scaled by the square of the inverse filter radius;
results greater than unity force a zero filter coefficient. Next the
squared distance is encoded into a 3-bit exponent, 5-bit mantissa
(+1 hidden bit) floating-point representation. This 8-bit floating-
point number is then used as an index into a (RAM) table of squared
distance vs. filter coefficients. From a numeric linearity point of
view, the squaring and floating-point encoding nearly cancel out,
resulting in accurate, relatively equally-spaced filter coefficients.
This can be seen in a plot of the synthesized filter values vs. dis-
tance in Figure 4.

The filter coefficient output of this table is a signed 14-bit floating-
point number, which is used to weight the rgba sample values. The
multiplied result is converted back into a 27-bit fixed-point number,
and directed into a set of summing trees. A separate running sum of
applied filter coefficients is similarly calculated.

Thus our hardware places only two restrictions on the reconstruc-
tion filter: it must be radially symmetric in the convolution space,
and the filter radial cross section has to be quantized to 256 values.
Note that through non-uniform video and/or screen space scalings,
elliptical filters in physical display space can be supported. Separa-
ble filters have theoretical advantages over radial filters, but radial
filtering was less complex to implement in hardware.

Technically our filter is a weighted average filter, because of how
we handle filter normalization. We perform a floating-point recip-
rocal operation on the sum of the filter coefficients, and a normal-
izing multiply on r, g, b, and a. There was an unexpected advantage
in using dynamic normalization: in simulations, the error compared
to the exact solution came out well below expectations. This is be-
cause slight errors in coefficient generation produce a similar bias
in the normalization value and are mostly canceled out. Remaining
numeric errors in coefficient generation have less perceptual effect
because they are equivalent to a correct coefficient at an incorrect
estimation of the sample distance from the center of the filter (error
in sample position). But samples should be quite representative of
the true underlying image in their vicinity. Most visible errors in an-
tialiased output are due to a sample just missing a significant
change in the underlying image (e.g. from black to white). The con-
tribution to image output errors due to errors in computing filter co-
efficient values is quite small by comparison.

Hyper-accurate filtering can preserve the quantization present in the
original samples (sometimes called contouring). To mitigate con-
touring, we dither 12-bit rgba samples computed during rendering
to the 10-bit rgba values actually stored in the sample buffer. Con-

**
*

-

- *

+

Find 1st 1

B
a
r
r
l
e

S
h
i
f
t

Filter
RAM
r2
filter
coeff-

*

Filter
Radius2

-
1.0

Range Check

Figure 2: Convolution chip architecture.

icient

6 swath-line

(18K Samples)
buffer

In

Filter Processor
Array

1/sum-coeff

*
Gamma

LUT

Samples

256
x 14

Inverse
rgba

Convolution center
raster location
generation

64 entry
sample
pattern
RAM

KernelX
5x5 region
generator &
sample adr
hash funct

SampleY

SampleX

RGBA

rgba

KernelY

KernelX

KernelY

SampleX

SampleY

Video In

RGBA,
sum-coeff

sum-coeff

Normalize

*

Video
Timing

coeff

*
+ +

Figure 3: Filter Processor Detail.

1

2

1

2
Video Out

swap

Color
LUT

Figure 4: Numerical accuracy of filter representation.

1/3, 1/3 Mitchell-Netravali Filter

2.01.0

The (barely visible) jaggies in this
curve are the quantization errors.

F
ilt

er
 W

ei
gh

t

Filter Radius

688

volution reconstruction of dithered sample values effectively revers-
es this dithering, achieving 12 bits of accuracy per rgba component.

7.1 Video Outputs

Up to two simultaneous, potentially asynchronous, video rasters
can be generated in parallel by partitioning the four Convolve chips
into two subsets; both video streams will emerge from the digital
video out ports of the last Convolve chip. The swap circuit shown
in Figure 2 allows each Convolve chip to add its results to either of
the incoming streams, and pass the other through unmodified.
(There is also a post-processing swap not shown.)

One use for this second channel is to be able to read the antialiased
image back into the computer, through the outer ring bus shown in
Figure 1. Without this option, the host computer would have no way
to get a copy of the antialiased image! This is useful when performing
antialiased rendering intended for later reuse as reflection maps, etc.

The Convolve video timing circuit can run as either a sync master
or as a sync slave genlocked to an external sync source. The two
video streams can be sub-regions of a what the window system and
rendering system think of as a single display (useful for tiling two
lower-resolution projectors/displays). Alternatively, the two video
sources can be two separate, potentially asynchronous, image re-
gions with potentially different sample densities.

7.2 Video Resizing

A key benefit of the SAGE architecture is that video resolution is de-
termined by the convolution hardware, not by rendering hardware.
Thus the same hardware used for antialiasing also provides an ex-
tremely high quality video rescaler, with better filtering quality than
is possible with an external scaler because it operates on the original
samples, not pixels, and SAGE correctly performs the filtering in
linear light space. One use of this is to generate NTSC video of arbi-
trary zoomed and panned sub-regions of a higher resolution display,
as might be used to document a software program. A more important
use is in systems with real-time guarantees: to conserve fill rate, the
actual size of the image rendered can be dynamically reduced, and
then interpolated back up to the fixed video output size. So a flight
simulator using a 1280×1024 video format might actually be render-
ing at 960×768 when the load gets heavy, saving nearly half the fill
time. The system described in [Montrym et al. 1997] also supports
dynamic video resizing, but uses a simple tent filter, and performs
the filtering in a non-linear (post-gamma) light space.

7.3 Fully Antialiased Alpha Channel

SAGE’s sample filtering algorithm operates not only on the rgb
channels, but also on stored double-buffered alpha if enabled. For
example, for virtual set applications this means that SAGE auto-
matically generates a very high quality “soft key” signal for blend-
ing antialiased edges of virtual objects in front of physical objects,
as well as blending variably transparent rendered objects in front of
physical objects.

8 CHOICE OF RECONSTRUCTION FILTER

Because it is programmable, the choice of reconstruction filters can
be left to the end user, but in general we have found that the same
Mitchell-Netravali family of cubic filters [Mitchell and Netravali
1988] used in high quality software renderers work well for hard-
ware. The choice of reconstruction filter has a subjective compo-
nent: some users prefer smoother filters that banish all jaggies at the
expense of a slight blurring of the image; other users desire a filter
that preserves sharpness at the risk of a few artifacts. There is also
a display-device-specific aspect to the choice of reconstruction fil-

ter: to get close to the same end-user “look” on a CRT vs. a flat panel
LCD display, slightly different filters are needed. While not of gen-
eral use, more exotic filters can be used to help simulate the appear-
ance of special imaging devices.

8.1 Effects of Negative Lobes

One of the prices that must be paid for the use of high quality recon-
struction filters is occasional artifacts (“ringing” or “fringing”) due
to the presence of negative lobes. Our filter hardware clamps nega-
tive color components to zero, and it also keeps a histogram of the
frequency and extent of such occurrences. This histogram data can
be used to dynamically reduce the negative lobes of the reconstruc-
tion filter if artifacts are too severe.

9 Legacy and Compatibility Issues

There are several legacy and compatibility issues that SAGE must
address. Many of these are handled by properties associated with
window ID tags that are part of each sample.

One example is support for applications that were programmed as-
suming a non-linear light space and/or a pseudo color space. The
non-linear light space is typically a particular gamma space. SAGE
supports these applications by providing pseudo color, direct color,
and non-linear true color LUTs as specified by window ID proper-
ties of samples. In SAGE, these LUTs are applied to samples before
the convolution. Of course, most 3D rendering is performed in lin-
ear light space, and so can by-pass these pre-convolve LUTs. This
pre-processing ensures that all sample inputs to the antialiasing
convolution process are in the same linear light space. After the
convolution process generates (linear light space) pixels, the pixels
are converted to the proper non-linear light space (e.g. gamma cor-
rection) for the particular display device attached to the system.

Not all pixels should be antialiased. Proper emulation of 2D win-
dow system rendering and legacy applications require accurate em-
ulation of all those jaggies. Our solution is to disable any filtering
of such pixels via a special property of the window ID tag of the
pixels of such windows. Instead, when so tagged, a sample (typical-
ly the one closest to the convolution center) is chosen to be output
in place of the convolution result. Thus it is possible for the screen
to simultaneously support antialiased and non-antialiased windows.
Because our filter has a 5×5 extent, care must be taken to ensure
that such unfiltered pixels do not contribute any samples to nearby
filtered pixels. This is the case, for example, when a non-antialiased
window occludes an antialiased window. Once again the dynamic
filter normalization circuit comes to the rescue; we simply don’t ap-
ply any filter coefficients from aliased pixels within the 5×5 win-
dow of an antialiased pixel, and still get unit volume under the ker-
nel. The same approach is also used to eliminate artifacts at the vis-
ible video border, in place of the traditional approach of adding an
extra non-visible strip of 2 pixels all around the full screen.

Other legacy issues include proper support of traditional antialiased
lines when also subject to supersampling and filtering. Our goal is
to allow as much as possible for existing applications to move to
full scene antialiased operation with minimal source code changes.

10 RESULTS

10.1 Images

Figure 5 is an image from the SAGE debugging simulator, and
shows the details of our sampling pattern for sample density 16 ren-
dering. The intensity of each dot corresponds to the computed sam-
ple value for rgb; the green lines are triangle tesselation boundaries;
the faint red grid lines are the pixel boundaries. 11 triangles are
shown: a 12-segment radius-3 pie wedge with one slice missing.

689

Because SAGE’s native output environment is a display, the next
set of images are digital photos of functional SAGE hardware driv-
ing a CRT screen. Figures 6 through 10 are shots of a portion of a
1280×1024 CRT display. Each shows the same portion of the same
object, a honeybee. The differences are in the sample count and re-
construction filter. Figure 6 shows one (uniformly spaced) sample
per pixel, with no reconstruction filtering. Figures 7 through 10 are
rendered using a sample density of 8. Figures 7 and 10 use the 4×4
Mitchell-Netravali 1/3 1/3 filter of Figure 4. Figure 8 uses a diam-
eter 4 cylinder filter, and shows considerable blur. Figure 9 uses a
Laplacian filter, and shows enhanced edges. Figure 10 is a wider
(approximately 800×800 pixel) shot of the bee.

10.2 Comparison to RenderMan

During SAGE’s development, Pixar’s Photorealistic RenderMan
(PRMAN) was used to verify the quality of the antialiasing algo-
rithms. Custom RenderMan shaders were written to mimic the dif-
ferent lighting algorithms employed. The same scene descriptions,
camera parameters, sampling rates, and reconstruction filters were
used to generate images from both renderers. The resulting images
cannot be expected to be numerically identical at every pixel, pri-
marily because of the different sample patterns used, as well as the
different numeric accuracies employed. (PRMAN uses full 32-bit
IEEE floating-point arithmetic internally.) So as a control, we also
ran PRMAN at a sample density of 256. Numerically, comparing
our hardware 16 sample rendering with that of PRMAN, fewer than
1% of the pixels differed in value by more than 6% (the contribu-
tion of a single sample). However, about the same variance was
seen between the 16-sample and 256 sample PRMAN images. This
explains the visual results: in general, expert observers could not
determine which image was rendered by which system.

10.3 Data Rates and Computational Requirements

A double-buffered sample buffer supporting 8× supersampled
1280×1024 imagery requires storage of over 20 million samples
(approximately an eighth of a gigabyte, including single-buffered
Z). For 76 Hz video display, because of overheads and fragmenta-
tion effects, we designed in a peak video output bandwidth of 1.6
billion samples per second, or 8 gigabytes per second. (Note that the
render fill data rate has to be several times larger than this to sup-
port interesting depth complexity scenes at full frame rates.)

A 5×5 filter at a sample density of 4 requires 25∗4∗4 floating-point
multiply-adds per output pixel, or 800 operations per pixel. A sim-
ilar number of operations are needed to generate all the filter coef-
ficients per pixel. At peak video output rates of 250 MHz, the total
operation count per second exceeds 0.4 teraflops. While these are
numbers generated by specialized hardware, it is important to note
that a (much) greater number of flops are consumed by general pur-
pose computers running equivalent software antialiasing algo-
rithms for equivalent work.

10.4 Scalable

The SAGE chip set was designed to scale the performance of a two
chip rendering sub-system into a parallel pipeline rendering system.
Not all the combinatorial variations of chip configurations allowed
by the SAGE architecture have been described in this paper on the
first implementation of a SAGE chip-set based system. In addition,
each current SAGE board has all the necessary hooks to be scaled
at the computer system level, to support even higher fill rates, reso-
lutions, and performance. These include the ability to function as a
sync slave, and synchronization signals for both stereo frame parity
and render buffer flip, as well as some special features enabled by
the architecture of the SAGE Convolve chip. SAGE is not unique
in this respect; one can also tile multiple commodity PC solutions

together. But with SAGE, one starts with a much more powerful
building block with high geometry and fill rates, large texture
stores, and that already performs high quality supersampled anti-
aliasing.

11 OTHER FEATURES

SAGE is a complex multi-chip machine. Details of textured render-
ing, lighting, picking, texture read-back, context switching, etc.
were re-implemented for SAGE, often somewhat differently than
has been done before. In this short paper, we chose to focus on the
major effects that the antialiasing algorithm had on the architecture;
this is not to detract from other areas of 3D graphics hardware
where the implementers pushed the envelope as well.

12 IMPLEMENTATION STATUS

Complete SAGE prototype hardware is up and running, with
OpenGL rendering and full scene antialiasing with arbitrary filters
as described in this paper. The board is shown in Figure 11.

13 CONCLUSIONS

A new high end architecture and implementation for 3D graphics
rendering, SAGE, has been described. The performance goal of
over 80 million lit, textured, antialiased triangles per second has
been met. We have also achieved our goal of producing a hardware
antialiasing system whose images are numerically and perceptually
indistinguishable from images generated by the antialiasing portion
of leading software renderers. This is achieved through the use of a
hardware double-buffered sample buffer with on-the-fly video-out
spatial filtering, capable of implementing non-uniform supersam-
pling with cubic reconstruction filters.

ACKNOWLEDGEMENTS

Thanks to Dean Stanton and Dan Rice for programming, proofread-
ing, and photo composition. Thanks to Clayton Castle for help with
video recording. Thanks to the entire SAGE development team,
without whom SAGE would not be possible.

REFERENCES

AKELEY, K. 1993. RealityEngine Graphics. In Proceedings of SIG-
GRAPH 1993, ACM Press / ACM SIGGRAPH, New York. Ka-
jiya, J., Ed., Computer Graphics Proceedings, Annual Confer-
ence Series, ACM, 109-116.

AKELEY, K. 2001. Course notes of CS448A, taught fall semester at
Stanford University. URL: http://graphics.stanford.edu/cours-
es/cs448a-01-fall/lectures/lecture5/

COOK, R, CARPENTER, L, and CATMULL, E. 1987. The Reyes Image
Rendering Architecture. In Computer Graphics (Proceedings of
SIGGRAPH 87), 21 (4) ACM, 95-102.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C and HUNT, N.
1988. The Triangle Processor and Normal Vector Shader: A
VLSI system for High Performance Graphics. In Computer
Graphics (Proceedings of SIGGRAPH 88), 22 (4) ACM, 21-30.

DEERING, M., SCHLAPP, S., and LAVELLE, M. 1994. FBRAM: A
new Form of Memory Optimized for 3D Graphics. In Proceed-
ings of SIGGRAPH 1994, ACM Press / ACM SIGGRAPH, New
York. Glassner, A., Ed., Computer Graphics Proceedings, An-
nual Conference Series, ACM, 167-174.

DOMINÉ, S. 2001. OpenGL Pixel Formats and Multisample Anti-
aliasing. URL: http://developer.nvidia.com/docs/IO/1594/ATT/
PixelformatsAndMultisample.pdf

690

EYLES, J., MOLNAR, S., POULTON, J., GREER, T., LASTRA, A., EN-
GLAND, N., and WESTOVER, L. 1997. PixelFlow: The Realiza-
tion. ‘97 Eurographics/SIGGRAPH Workshop on Graphics
Hardware (Los Angeles, CA, Aug 3-4, 1997).

GLASSNER, A. 1995. Principles of Digital Image Synthesis. Morgan
Kaufmann.

HAEBERLI, P., and AKELEY, K. 1990. The Accumulation Buffer: Hard-
ware Support for High-Quality Rendering. In Computer Graphics
(Proceedings of SIGGRAPH 90), 24 (4) ACM, 309-318.

MITCHELL, D., and NETRAVALI, A. 1988. Reconstruction Filters in
Computer Graphics. In Computer Graphics (Proceedings of
SIGGRAPH 88), 22 (4) ACM, 221, 228.

MOLNAR, S., COX, M., ELLSWORTH, D., and FUCHS, H. 1994. A
Sorting Classification of Parallel Rendering, IEEE Computer
Graphics and Applications, July 1994, 23-32.

MONTRYM, J., BAUM, D., DIGNAM, D., and MIGDAL, C. 1997. Infi-
niteReality: A Real-Time Graphics System. In Proceedings of
SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, New York.
Whitted, T., Ed., Computer Graphics Proceedings, Annual Con-
ference Series, ACM, 293-302.

STOLL, G., ELDRIDGE, M., PATTERSON, D., WEBB, A., BERMAN, S.,
LEVY, R., CAYWOOD, C., TAVEIRA, M., HUNT., S., and HANRAH-
AN, P. 2001. Lightning-2: A High Performance Display Subsystem
for PC Clusters. In Proceedings of SIGGRAPH 2001, ACM Press
/ ACM SIGGRAPH, New York. E. Fume, Ed., Computer Graph-
ics Proceedings, Annual Conference Series, ACM, 141-148.

TAROLLI, G.1999. Real-Time Cinematic Effects on the PC: The
3Dfx T-Buffer. Hot 3D presentation in Eurographics/SIG-
GRAPH Workshop on Graphics Hardware 1999, IEEE Press.

TREMBLAY, M., CHAN, J., CHAUDHRY, S., CONIGLIARO, A., TSE,
S.S., 2000. The MAJC Architecture; A Synthesis of Parallelism
and Scalability. IEEE Micro Mag. Nov/Dec 2000, Vol 20, 12-25.

UPSTILL, S. 1990. The RenderMan Companion. Addison-Wesley.

WINNER, S., KELLY, M., PEASE, B., RIVARD, B., and YEN, Y. 1997.
Hardware Accelerated Rendering Of Antialiasing Using A
Modified A-buffer Algorithm. In Proceedings of SIGGRAPH
1997, ACM Press / ACM SIGGRAPH, New York. Whitted, T.,
Ed., Computer Graphics Proceedings, Annual Conference Se-
ries, ACM, 307-316.

Figure 5: Sample pattern at density 16

Figure 6: Bee, sample density 1, no filter.

Figure 7: Bee, sample density 8, 1/3 1/3 Mitchell filter.

Figure 8: Bee, sample density 8, diameter 4 cylinder filter.

Figure 9: Bee, sample density 8, Laplacian filter.

691

Figure 10: Bee, sample density 8, 1/3 1/3 Mitchell filter.

Figure 11: Photo of prototype SAGE board.

692

